Abstract

This study is concerned with the stability analysis and the feedback stabilization problems for a class of uncertain switched nonlinear systems with multiple time-varying delays. Unusually, more general time delays, which depend on the subsystem number, are considered. In this regard, by constructing a novel common Lyapunov function, using the aggregation techniques and the Borne and Gentina criterion, new algebraic stability and feedback stabilization conditions under arbitrary switching are derived. The proposed results are explicit and obtained without searching a common Lyapunov function through the linear matrix inequalities approach, considered a difficult matter in this case. At last, two numerical simulation examples are shown to prove the practical utility of the suggested approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.