Abstract

This paper investigates the robust stability of a multiagent system moving to a desired rigid formation in presence of unknown time-varying communication delays and actuator faults. Each agent uses relative position measurements to implement the proposed control method, which does not require common coordinate references. However, the presence of time delays in the measurements, which is inherent to the communication links between agents, has a negative impact in the control system performance leading, in some cases, to instability. Furthermore, the robust stability analysis becomes more complex if failures on actuators are taken into account. In addition, delays may be subject to time variations, depending on network load, availability of communication resources, dynamic routing protocols, or other environmental conditions. To cope with these problems, a sufficient condition based on Linear Matrix Inequalities (LMI) is provided to ensure the robust asymptotic convergence of the agents to the desired formation. This condition is valid for any arbitrarily fast time-varying delays and actuator faults, given a worst-case point-to-point delay. Finally, simulation results show the performance of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call