Abstract

AbstractExamples of “doubly robust” estimators for missing data include augmented inverse probability weighting (AIPWT) and penalized splines of propensity prediction (PSPP). Doubly robust estimators have the property that, if either the response propensity or the mean is modeled correctly, a consistent estimator of the population mean is obtained. However, doubly robust estimators can perform poorly when modest misspecification is present in both models. Here we consider extensions of the AIPWT and PSPP that use Bayesian additive regression trees (BART) to provide highly robust propensity and mean model estimation. We term these “robust-squared” in the sense that the propensity score, the means, or both can be estimated with minimal model misspecification, and applied to the doubly robust estimator. We consider their behavior via simulations where propensities and/or mean models are misspecified. We apply our proposed method to impute missing instantaneous velocity (delta-v) values from the 2014 National Automotive Sampling System Crashworthiness Data System dataset and missing Blood Alcohol Concentration values from the 2015 Fatality Analysis Reporting System dataset. We found that BART, applied to PSPP and AIPWT, provides a more robust estimate compared with PSPP and AIPWT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call