Abstract
We propose and realize a spot-packaged structure for the microsphere-taper coupling system by only encapsulating and solidifying the coupling region with low refractive index polymer as the package material. After spot-package, ultrahigh quality factor <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(>10^{7})$</tex> </formula> is obtained with the microsphere diameters around 300 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu \hbox{m}$</tex></formula> . The robustness of the spot-packaged structure is also tested, demonstrating the remarkable anti-tensile strength ability with the bearable loaded force larger than 0.05 N for a packaged structure with the spot-package area larger than 30 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu \hbox{m}^{2}$</tex></formula> . In addition, the spot-packaged structure is integrated with standard fiber, promising in in-line optical practical evanescent field sensing applications, especially in harsh detecting environments demanding high overload resistance. <?Pub _bookmark="" Command="[Quick Mark]"?>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.