Abstract

Robustness to errors produced by automatic speech recognition (ASR) is essential for Spoken Language Understanding (SLU). Traditional robust SLU typically needs ASR hypotheses with semantic annotations for training. However, semantic annotation is very expensive, and the corresponding ASR system may change frequently. Here, we propose a novel unsupervised ASR-error adaptation method, obviating the need of annotated ASR hypotheses. It only requires semantically annotated transcripts for the slot-tagging task and the transcripts paired with hypotheses for an input sentence reconstruction task. In this method, feature encoders which share part of the parameters are exploited to enforce the tasks in a similar feature space. Therefore, the transcript side slot-tagging model can be transferred to ASR hypotheses side easily. Experiments show that the proposed approach can yield significant improvement over strong baselines, and achieve performance very close to the oracle system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.