Abstract

This paper presents a robust speed controller design method based on fuzzy logic control(FLC) for robust torsional vibration suppression control scheme in rolling mill drive system. This method proposes a torsional vibration suppression controller that comprises a reduced-order state feedback controller and a PI controller whose motor speed and observed torsional torque are fed back. By using the mechanical parameters estimated by an off-line recursive least square algorithm, a speed controller for torsional vibration suppression and its gains can be determined by FLC with the Kharitonov’s robust control theory. This method can yield a robust stability with a specified stability margin and damping limit. Even if the parameters are varied within some specified range, the proposed control method guarantees a highly efficient vibration suppression. By using a fully digitalized 5.5 kW rolling mill drive system, the effectiveness and usefulness of the proposed scheme are verified and obtained experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call