Abstract

This paper proposes a novel nonlinear speed control method for permanent magnet synchronous motors that enhances their robustness and tracking performance. This technique integrates a sliding-mode disturbance observer and variable-gain fractional-order super-twisting sliding-mode control within a vector-control framework. The proposed control scheme employs a sliding-mode control method to mitigate chattering and improve dynamics by implementing fractional-order theory with a variable-gain super-twisting sliding manifold design while regulating the speed of the considered motor system. The aforementioned observer is suggested to enhance the control accuracy by estimating and compensating for the lumped disturbances. The proposed methodology demonstrates its superiority over other control schemes such as traditional sliding-mode control, super-twisting sliding-mode control, and the proposed technique. MATLAB/Simulink simulations and real-time implementation validate its performance, showing its potential as a reliable and efficient control approach for the system under study in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.