Abstract
Speech recognition, the problem of performance degradation is the difference between the model training and recognition environments. Silence features normalized using the method as a way to reduce the inconsistency of such an environment. Silence features normalized way of existing in the low signal-to-noise ratio. Increase the energy level of the silence interval for speech and non-speech classification accuracy due to the falling. There is a problem in the recognition performance is degraded. This paper proposed a robust speech detection method in noisy environments using a SFN (silence feature normalization) and SEM (speech energy maximize). In the high signal-to-noise ratio for the proposed method was used to maximize the characteristics receive less characterized the effects of noise by the speech energy. Cepstral feature distribution of speech and non-speech characteristics in the low signal-tonoise ratio and improves the recognition performance. Result of the recognition experiment, recognition performance improved compared to the conventional method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia and Ubiquitous Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.