Abstract

AbstractIn low signal‐to‐noise ratio (SNR) cases, the performance of spectrum sensing algorithms cannot meet the practical needs, which is a major problem faced by spectrum sensing technology in current cognitive radio field. Now, existing algorithms based on random matrix theory (RMT) have high sensing performance, but they require a large number of samples, which are very difficult to satisfy in practice. Free probability theory (FPT) is a main branch of RMT. It describes the asymptotic behavior of large random matrices and portrays a strong link between two matrices and their sum or product matrices. FPT can also be utilized to the digital communication system that can be modeled by random matrices and has been applied to spectrum sensing in simplified ideal channels, for example, additive white Gaussian noise channel. The most pivotal issue and difficulty of the FPT‐based methods is to set up and solve the asymptotic freeness equation corresponding to a specific communication model. In this paper, FPT‐based spectrum sensing schemes are proposed for some typical wireless communication systems, such as multiple‐input multiple‐output system, Rayleigh multipath fading system, and orthogonal frequency division multiplexing system. It is shown that the asymptotic freeness behavior of random matrices and the property of Wishart distribution can be used to assist spectrum sensing for these typical systems with low SNR and very limited samples. Simulation results demonstrate that compared with the existing RMT‐based spectrum detection methods, for example, the maximum and minimum eigenvalue detectors, the proposed FPT‐based schemes offer superior detection performance and are more robust to low SNR cases, especially for a small sample of observations. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call