Abstract

Multimodal brain MR image analysis is still a challenging research area due to its complex intensity distribution and sensitivity towards the noise. Tumourous cells have different characteristics than normal human cells, which makes them more salient. In this Letter, the authors propose a novel unsupervised spatial information based saliency boosting tumour detection method which will help to identify tumourous cells by making it more clearly visible. Initially, a pseudo-coloured MR image is formed using the CIELab colour space. Saliency map has been established by calculating distance among scales varying elliptical windows in both spatial and colour space. Elliptical windows endeavour to cover-up curved outliers of the brain images. The average intensity value is kept constant by fixing the axis ratio for each window. The proposed algorithm has been evaluated on both real and simulated brain images of different patients from MICCAI-BRATS database. The performance analysis of the new algorithm exhibits higher accuracy with a low computational complexity as compared to other state of the art. The efficacy is due to the immobility of the window across rows and columns to move over the image. The novelty of the proposed technique is that neither it downscales the input images nor require any training bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.