Abstract

Precise control of the shape of plasma in a tokamak requires reliable reconstruction of the plasma boundary. The problem of boundary estimation can be reduced to a simple linear regression with a potentially infinite amount of regressors. This regression problem poses some difficulties for classical methods. The selection of regressors significantly influences the reconstructed boundary. Also, the underlying model may not be valid during certain phases of the plasma discharge. Formal model structure estimation technique based on the automatic relevance principle yields a version of sparse least squares estimator. In this contribution, we extend the previous method by relaxing the assumption of Gaussian noise and using Student’s t-distribution instead. Such a model is less sensitive to potential outliers in the measurement. We show on simulations and real data that the proposed modification improves estimation of the plasma boundary in some stages of a plasma discharge. Performance of the resulting algorithm is evaluated with respect to a more detailed and computationally costly model which is considered to be the “ground truth” The results are also compared to those of Lasso and Tikhonov regularization techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.