Abstract

Remote sensing image scene classification is a fundamental problem, which aims to label an image with a specific semantic category automatically. Recent progress on remote sensing image scene classification is substantial, benefitting mostly from the powerful feature extraction capability of convolutional neural networks (CNNs). Even though these CNN-based methods have achieved competitive performances, they only construct the representation of the image in location-sensitive space-domain. As a result, their representations are not robust to rotation-variant remote sensing images, which influence the classification accuracy. In this paper, we propose a novel feature representation method by introducing a frequency-domain branch to the traditional only-space-domain architecture. Our framework takes full advantages of discriminative features from space domain and location-robust features from the frequency domain, providing more advanced representations through an additional joint learning module, a property that is critically needed to perform remote sensing image scene classification. Additionally, our method produces satisfactory performances on four public and challenging remote sensing image scene data sets, Sydney, UC-Merced, WHU-RS19, and AID.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.