Abstract

In many applications, the network design problem (NDP) faces significant uncertainty in transportation costs and demand, as it can be difficult to estimate current (and future values) of these quantities. In this paper, we present a robust optimization-based formulation for the NDP under transportation cost and demand uncertainty. We show that solving an approximation to this robust formulation of the NDP can be done efficiently for a network with single origin and destination per commodity and general uncertainty in transportation costs and demand that are independent of each other. For a network with path constraints, we propose an efficient column generation procedure to solve the linear programming relaxation. We also present computational results that show that the approximate robust solution found provides significant savings in the worst case while incurring only minor sub-optimality for specific instances of the uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call