Abstract

We consider the problem of solving linear systems of equations that arise in the numerical solution of singularly perturbed ordinary and partial differential equations of reaction-diffusion type. Standard discretization techniques are not suitable for such problems and, so, specially tailored methods are required, usually involving adapted or fitted meshes that resolve important features such as boundary and/or interior layers. In this study, we consider classical finite difference schemes on the layer adapted meshes of Shishkin and Bakhvalov. We show that standard direct solvers exhibit poor scaling behavior, with respect to the perturbation parameter, when solving the resulting linear systems. We propose and prove optimality of a new block-structured preconditioning approach that is robust for small values of the perturbation parameter, and compares favorably with standard robust multigrid preconditioners for these linear systems. We also derive stopping criteria which ensure that the potential accuracy of the layer-resolving meshes is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.