Abstract

Currently, writer's soft-biometrics prediction is gaining an important role in various domains related to forensics and anonymous writing identification. The purpose of this work is to develop a robust prediction of the writer's gender, age range and handedness. First, three prediction systems using SVM classifier and different features, that are pixel density, pixel distribution and gradient local binary patterns, are proposed. Since each system performs differently to the others, a combination method that aggregates a robust prediction from individual systems, is proposed. This combination uses Fuzzy MIN and MAX rules to combine membership degrees derived from predictor outputs according to their performances, which are modeled by Fuzzy measures. Experiments are conducted on two Arabic and English public handwriting datasets. The comparison of individual predictors with the state of the art highlights the relevance of proposed features. Besides, the proposed Fuzzy MIN-MAX combination comfortably outperforms individual systems and classical combination rules. Relatively to Sugeno's Fuzzy Integral, it has similar computational complexity while performing better in most cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.