Abstract
Continuous phase estimation is known to be superior in accuracy as compared to static estimation. The estimation process is, however, desired to be made robust to uncertainties in the underlying parameters. Here, homodyne phase estimation of coherent and squeezed states of light, evolving continuously under the influence of a second-order resonant noise process, are made robust to parameter uncertainties using a robust fixed-interval smoother, designed for uncertain systems satisfying a certain integral quadratic constraint. We observe that such a robust smoother provides improved worst-case performance over the optimal smoother and also performs better than a robust filter for the uncertain system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.