Abstract
Document image processing has become an increasingly important technology in the automation of office documentation tasks. Automatic document scanners such as text readers and OCR (optical character recognition) systems are an essential component of systems capable of those tasks. One of the problems in this field is that the document to be read is not always placed correctly on a flat-bed scanner. This means that the document may be skewed on the scanner bed, resulting in a skewed image. This skew has a detrimental effect on document analysis, document understanding, and character segmentation and recognition. Consequently, detecting the skew of a document image and correcting it are important issues in realizing a practical document reader. The proposed skew detection algorithm has no restriction on detectable angle range and does not rely on large blocks of text. It works well on textual document images, graphical images and mixed text and graphic images. The performance of the systems was evaluated using over 60 images that consist of real life documents like envelopes and artificial mixed text/graphic icons. The skew detection algorithm is robust when compared with other methods when very few text lines are present in the document image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.