Abstract
Phenylalanine ammonia-lyases (PALs) catalyse the non-oxidative deamination of l-phenylalanine to trans-cinnamic acid, while in the presence of high ammonia concentration, the synthetically attractive reverse reaction occurs. Although they have been intensively studied, the wider application of PALs for the large scale synthesis of non-natural amino acids is still rather limited, mainly due to the decreased operational stability of PALs under the high ammonia concentration conditions of ammonia addition. Herein, we describe the development of a highly stable and active immobilized PAL-biocatalyst obtained through site-specific covalent immobilization onto single-walled carbon nanotubes (SWCNTs), employing maleimide/thiol coupling of engineered enzymes containing surficial Cys residues. The immobilization method afforded robust biocatalysts (by strong covalent attachment to the support) and allowed modulation of enzymatic activity (by proper selection of binding site, controlling the orientation of the enzyme attached to the support). The novel biocatalysts were investigated in PAL-catalyzed reactions, focusing on the synthetically challenging ammonia addition reaction. The optimization of the immobilization (enzyme load) and reaction conditions (substrate : biocatalyst ratio, ammonia source, reaction temperature) involving the best performing biocatalyst SWCNTNH2-SS-PcPAL was performed. The biocatalyst, under the optimal reaction conditions, showed high catalytic efficiency, providing excellent conversion (c ∼90% in 10 h) of cinnamic acid into l-Phe, and more importantly, possesses high operational stability, maintaining its high efficiency over >7 reaction cycles. Moreover, the site-specifically immobilized PcPAL L134A/S614C and PcPAL I460V/S614C variants were successfully applied in the synthesis of several l-phenylalanine analogues of high synthetic value, providing perspectives for the efficient replacement of classical synthetic methods for l-phenylalanines with a mild, selective and eco-friendly enzymatic alternative.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.