Abstract
Abstract The efficiency and robustness of modern visual tracking systems are largely dependent on the object detection system at hand. Bernoulli and Multi-Bernoulli filters have been proposed for visual tracking without explicit detections (image observations). However, these previous approaches do not fully exploit discriminative features for tracking. In this paper, we propose a novel Bernoulli filter with determinantal point processes observations. The proposed observation model can select groups of detections with high detection scores and low correlation among the observed features; thus achieving a robust filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Smart Sensing and Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.