Abstract

To use simulation models to study the behaviors of stochastic systems, one needs to specify the distribution of the input random variables. However, specifying this distribution precisely is typically difficult and even impossible in practice. The issue is known as input uncertainty in the simulation literature, and it has been considered and studied extensively in recent years. In this paper, we model the uncertainty by an ambiguity set that is defined based on the likelihood ratio between the true (unknown) distribution and the nominal distribution (i.e., the best estimate), and develop a robust simulation (RS) approach that estimates the worst-case values of performance measures of the random simulation output when the true distribution varies in the ambiguity set. We show that the RS approach is computationally tractable, and the corresponding results reveal important information of the stochastic systems and help decision makers make better decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.