Abstract

The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.