Abstract

We synthesized and characterized small yet highly robust silica-coated quantum dots (QDs) and then used them to develop highly sensitive molecular beacon (MB) for DNA detection. As compared to the previously reported methods, our silica coating approach enabled simple and rapid synthesis of silica-coated QDs in large quantities and high concentrations with a well-controlled silica layer. The QDs such made were stable and had a high quantum yield in a wide range of pH values (1–14) and high salt concentrations (up to 2 M). They were less than 10 nm in diameter, much smaller than current silica-coated QDs, thus allowing for efficient energy transfer. The MB sensor based on these silica-coated QDs was capable of rapidly detecting the target DNA at 0.1 nM concentration within 15 min. It could also differentiate the target DNA from the single base mismatched DNA. The QD–MB developed in this work can be used for highly sensitive and selective detection of DNA and other biomolecules in homogeneous solution and inside a cell, as well as in harsh environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call