Abstract
Recently published research shows that Lomax distribution exhibits compressibility in Lorentz curves. In this paper, we address the problem of signal reconstruction in the high noise level and phase error environments in a Bayesian framework of Lomax prior distribution. Furthermore, from the perspective of improving sparsity and compressibility of the signal constraints, a novel reconstruction model deducted from Lomax-prior-based Bayesian compressed sensing (LomaxCS) is proposed. The LomaxCS improves the accuracy of existing Bayesian compressed sensing signal reconstruction methods and enhances the robustness against Gauss noise and phase errors. Compared with the conventional models, the proposed LomaxCS model still reveals the general profile of the signal in the worst conditions. The experimental results demonstrate that the proposed algorithm can achieve substantial improvements in terms of recovering signal quality and robustness; meanwhile, it brings an evident application prospect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.