Abstract

We address high dimensional covariance estimation for elliptical distributed samples, which are also known as spherically invariant random vectors (SIRV) or compound-Gaussian processes. Specifically we consider shrinkage methods that are suitable for high dimensional problems with a small number of samples (large $p$ small $n$). We start from a classical robust covariance estimator [Tyler(1987)], which is distribution-free within the family of elliptical distribution but inapplicable when $n<p$. Using a shrinkage coefficient, we regularize Tyler's fixed point iterations. We prove that, for all $n$ and $p$, the proposed fixed point iterations converge to a unique limit regardless of the initial condition. Next, we propose a simple, closed-form and data dependent choice for the shrinkage coefficient, which is based on a minimum mean squared error framework. Simulations demonstrate that the proposed method achieves low estimation error and is robust to heavy-tailed samples. Finally, as a real world application we demonstrate the performance of the proposed technique in the context of activity/intrusion detection using a wireless sensor network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.