Abstract

3D shape normalization is a common task in various computer graphics and pattern recognition applications. It aims to normalize different objects into a canonical coordinate frame with respect to rigid transformations containing translation, rotation and scaling in order to guarantee a unique representation. However, the conventional normalization approaches do not perform well when dealing with 3D articulated objects.To address this issue, we introduce a new method for normalizing a 3D articulated object in the volumetric form. We use techniques from robust statistics to guide the classical normalization computation. The key idea is to estimate the initial normalization by using implicit shape representation, which produces a novel articulation insensitive weight function to reduce the influence of articulated deformation. We also propose and prove the articulation insensitivity of implicit shape representation. The final solution is found by means of iteratively reweighted least squares. Our method is robust to articulated deformation without any explicit shape decomposition. The experimental results and some applications are presented for demonstrating the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.