Abstract

Advances in isothermal amplification techniques have accelerated development in biosensing applications and the design of complex molecular devices. The exponential amplification reaction technique, or EXPAR, is uniquely positioned to process molecular information from short oligonucleotide strands (≈10nucleotides length) typically encountered in molecular computing or microRNA detection. Despite its conceptual simplicity (requiring only a template strand and two enzymes), the issue of nonspecific background amplification has hindered broader adoption. In this work, a new system configuration is established at 37 °C to achieve significantly improved performance. Critical sequence motifs responsible for the excellent signal-to-background profile are identified and generalized as a universal adapter design framework. Orthogonal template sequences generated from the framework are implemented for a triplex reaction and successfully evaluated mixtures of multiple-target inputs in a single-step, one-pot format without the need for exogenous agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.