Abstract

AbstractResults in recursion-theoretic inductive inference have been criticized as depending on unrealistic self-referential examples. J. M. Bārzdiņš proposed a way of ruling out such examples, and conjectured that one of the earliest results of inductive inference theory would fall if his method were used. In this paper we refute Bārzdiņš' conjecture.We propose a new line of research examining robust separations; these are defined using a strengthening of Bārzdiņš' original idea. The preliminary results of the new line of research are presented, and the most important open problem is stated as a conjecture. Finally, we discuss the extension of this work from function learning to formal language learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.