Abstract

In this paper, we propose a robust self-triggered model predictive control (MPC) algorithm for constrained discrete-time nonlinear systems subject to parametric uncertainties and disturbances. To fulfill robust constraint satisfaction, we take advantage of the min–max MPC framework to consider the worst case of all possible uncertainty realizations. In this framework, a novel cost function is designed based on which a self-triggered strategy is introduced via optimization. The conditions on ensuring algorithm feasibility and closed-loop stability are developed. In particular, we show that the closed-loop system is input-to-state practical stable (ISpS) in the attraction region at triggering time instants. In addition, we show that the main feasibility and stability conditions reduce to a linear matrix inequality for linear case. Finally, numerical simulations and comparison studies are performed to verify the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.