Abstract
In this paper, we recover the amplitude of a seismic image by approximating the normal (demigration-migration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that employs an eigenvalue like decomposition for the normal operator using curvelets as eigen-vectors. Subsequently, we propose an approximate non-linear singularity-preserving solution to the least-squares seismic imaging problem with sparseness in the curvelet domain and spatial continuity constraints. Our method is tested with a reverse-time `wave-equation' migration code simulating the acoustic wave equation on the SEG-AA salt model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.