Abstract

Stochastic performance measures can be taken into account, in structural optimization, using two distinct formulations: robust design optimization (RDO) and reliability-based design optimization (RBDO). According to a RDO formulation, it is desired to obtain solutions insensitive to the uncontrollable parameter variation. In the present study, the solution of a structural robust design problem formulated as a two-objective optimization problem is addressed, where cross-sectional dimensions, material properties and earthquake loading are considered as random variables. Additionally, a two-objective deterministic-based optimization (DBO) problem is also considered. In particular, the DBO and RDO formulations are employed for assessing the Greek national seismic design code for steel structural buildings with respect to the behavioral factor considered. The limit-state-dependent cost is used as a measure of assessment. The stochastic finite element problem is solved using the Monte Carlo Simulation method, while a modified NSGA-II algorithm is employed for solving the two-objective optimization problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.