Abstract
Selection of initial seeds greatly affects the quality of the clusters and in k-means type algorithms. Most of the seed selection methods result different results in different independent runs. We propose a single, optimal, outlier insensitive seed selection algorithm for k-means type algorithms as extension to k-means++. The experimental results on synthetic, real and on microarray data sets demonstrated that effectiveness of the new algorithm in producing the clustering results
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Science and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.