Abstract

This paper focuses on manufacturing environments where job processing times are uncertain. In these settings, scheduling decision makers are exposed to the risk that an optimal schedule with respect to a deterministic or stochastic model will perform poorly when evaluated relative to actual processing times. Since the quality of scheduling decisions is frequently judged as if processing times were known a priori, robust scheduling, i.e., determining a schedule whose performance (compared to the associated optimal schedule) is relatively insensitive to the potential realizations of job processing times, provides a reasonable mechanism for hedging against the prevailing processing time uncertainty. In this paper we focus on a two-machine flow shop environment in which the processing times of jobs are uncertain and the performance measure of interest is system makespan. We present a measure of schedule robustness that explicitly considers the risk of poor system performance over all potential realizations of job processing times. We discuss two alternative frameworks for structuring processing time uncertainty. For each case, we define the robust scheduling problem, establish problem complexity, discuss properties of robust schedules, and develop exact and heuristic solution approaches. Computational results indicate that robust schedules provide effective hedges against processing time uncertainty while maintaining excellent expected makespan performance

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.