Abstract

This brief investigates the problem of robust sampled-data H ∞ control for active vehicle suspension systems. By using an input delay approach, the active vehicle suspension system with sampling measurements is transformed into a continuous-time system with a delay in the state. The transformed system contains non-differentiable time-varying state delay and polytopic parameter uncertainties. A Lyapunov functional approach is employed to establish the H ∞ performance, and the controller design is cast into a convex optimization problem with linear matrix inequality (LMI) constraints. A quarter-car model is considered in this brief and the effectiveness of the proposed approach is illustrated by a realistic design example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.