Abstract

ABSTRACT In this paper, an approach for computing online safety zones for collaborative robotics in a robust way, despite uncertain robot dynamics, is proposed. The strategy implements the speed and separation monitoring paradigm, and considers human and robot enclosed in bounding volumes. The human-robot collaboration is monitored by a supervisory controller that guides the robot to stop along a path-consistent trajectory in case of collision danger between human and robot. The size of the robot safety zone is minimized online according to the stop time of the manipulator, and the uncertain robot dynamics is considered using interval arithmetic to ensure compliance with the joint torques limits even in case of imperfect knowledge of the dynamic model parameters. The results verify the effectiveness of the proposed approach, and evaluate the influence of dynamics variations on human-robot collaboration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.