Abstract

For ultra-precision machining machine tool components need to operate outside critical frequencies of the machining system to avoid insufficient surface finish caused by vibrations. This particularly applies to tooling spindles as those are generally the component of a machine tool with low stiffness and damping values. Surface finish and shape of a machined part rely directly on the overall accuracy in motion of the tooling spindle over the entire machining parameter and speed range. Thus spindle designs for an operation outside critical frequencies combined with high stiffness and damping values are crucial for ultra-precision machining.For sufficient stiffness properties bearing gaps of gas bearings have to have a size of only a few microns and show a distinct sensitivity on temperature and for journal bearings also on speed. This again means that bearing properties change with temperature and speed. Considering a spindle system comprising a rigid shaft rotating in a radial/axial bearing system with changing stiffness and damping properties leads to a resonance speed map with changing rigid mode resonance speeds.This paper treats the influence of shaft speed and temperature on bearing gaps from which rigid mode resonance speeds for a shaft spinning in a bearing system are derived. The quoted influence of centrifugal load and temperature on bearing stiffness, damping and load capacity can be applied to any kind of gas bearing. Therefore the calculation of bearing stiffness, damping or load capacity is not treated in detail. The reader will be shown that there are simple design rules for air bearing systems and shafts of high-speed tooling spindles to avoid critical speeds through the entire speed range. Finally, methods of how to prove the initial design goals and how to verify dynamics of high-speed spindles in production will be presented to the reader. It will also be shown that there are production high-speed spindles available which do not include any critical speed within their speed range and thus show robust rotor dynamics with extremely low errors in motion.Procedures in design, validation and application treated in this paper shall give the reader not only design guidelines for spindles to avoid critical spindle speeds within its speed range, but also recommendations for machine tool builders and end-users for a machine operation taking machine and rotor dynamics into account. As the knowledge for this paper is predominantly based on the experience and work of the author himself only a few references are used. However presented testing results entirely confirm the approach presented in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call