Abstract

In this paper, a model based texture classification procedure is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a moment invariants based technique to classify the ACF. The resulting proposed classification procedure is thus inherently rotation invariant. Moreover, it is robust with respect to additive noise. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while containing the size of the feature space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.