Abstract
This paper addresses two vital issues which are barely discussed in the literature on robust unit commitment (RUC): 1) how much the potential operational loss could be if the realization of uncertainty is beyond the prescribed uncertainty set; 2) how large the prescribed uncertainty set should be when it is used for RUC decision making. In this regard, a robust risk-constrained unit commitment (RRUC) formulation is proposed to cope with large-scale volatile and uncertain wind generation. Differing from existing RUC formulations, the wind generation uncertainty set in RRUC is adjustable via choosing diverse levels of operational risk. By optimizing the uncertainty set, RRUC can allocate operational flexibility of power systems over spatial and temporal domains optimally, reducing operational cost in a risk-constrained manner. Moreover, since impact of wind generation realization out of the prescribed uncertainty set on operational risk is taken into account, RRUC outperforms RUC in the case of rare events. Three algorithms based on column and constraint generation (C&CG) are derived to solve the RRUC. As the proposed algorithms are quite general, they can also apply to other RUC models to improve their computational efficiency. Simulations on a modified IEEE 118-bus system demonstrate the effectiveness and efficiency of the proposed methodology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.