Abstract

Retinal fundus photographs are employed as standard diagnostic tools in ophthalmology. Serial photographs of the flow of fluorescein and indocyanine green (ICG) dye are used to determine the areas of the retinal lesions. For objective measurements of features, the registration of the images is a necessity. In this paper, we employ optimization techniques for registration with the help of 2-parameter translational motion model of retinal angiograms, based on non-linear pre-processing (Wiener filtering and morphological gradient) and computation of the similarity criteria for the alignment of the two gradient images for any given rigid transformation. The optimization methods are effectively employed to minimize the similarity criterion. The presence of noise, the variations in the background and the temporal variation of the fluorescence level pose serious problems in obtaining a robust registration of the retinal images. Moreover, local search strategies are not robust in the case of ICG angiograms, even if one uses a multiresolution approach. The present work makes a systematic comparison of different optimization techniques, namely the minimization method derived from the optical flow formulation, the Nelder-Mead local search and the HCIAC ant colony metaheuristic, each optimizing a similarity criterion for the gradient images. The impact of the resolution and median filtering of gradient image is studied and the robustness of the approaches is tested through experimental studies, performed on macular fluorescein and ICG angiographies. Our proposed optimization techniques have shown interesting results especially for high resolution difficult registration problems. Moreover, this approach seems promising for affine (6-parameter motion model) or elastical registrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.