Abstract
The diverse application vertices of internet-of-things (IoT) including internet of vehicles (IoV), industrial IoT (IIoT) and internet of drones things (IoDT) involve intelligent communication between the massive number of objects around us. This digital transformation strives for seamless data flow, uninterrupted communication capabilities, low latency and ultra-high reliability. The limited capabilities of fifth generation (5G) technology have given way to sixth generation (6G) wireless technology. This paper presents a dynamic cell-free framework for a 6G-enabled IoT network. A number of access points (APs) are distributed over a given geographical area to serve a large number of user nodes. A pilot-based AP selection (PBAS) algorithm is proposed, which offers robust resource control through AP selection based on pilots. Selecting a subset of APs against all APs for each user node results in improved performance. In this paper, the performance of the proposed transmission model is evaluated for the achieved data rate and spectral efficiency using the proposed algorithm. It is shown that the proposed PBAS algorithm improves the spectral efficiency by 22% at the cell-edge and 1.5% at the cell-center. A comparison of the different combining techniques used at different user locations is also provided, along with the mathematical formulations. Finally, the proposed model is compared with two other transmission models for performance evaluation. It is observed that the spectral efficiency achieved by an edge node with the proposed scheme is 5.3676 bits/s/Hz, compared to 0.756 bits/s/Hz and 1.0501 bits/s/Hz, attained with transmission schemes 1 and 2, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.