Abstract

Energy efficiency (EE) is a significant performance indicator in unmanned aerial vehicle (UAV)-assisted communication networks for providing a balance between power consumption minimization and transmission rate maximization. However, most of the current works focus on the transmission rate maximization under perfect channel state information (CSI) and exact coordinate information, which is too ideal in practical systems due to channel estimation errors and coordinate estimation errors. Thus, robust resource allocation algorithms with imperfect CSI and coordinate information are critically important to reduce users’ outages and improve system robustness. In this article, a robust EE maximization problem with channel uncertainties and coordinate uncertainties is formulated for an energy harvesting-based device-to-device (D2D) communication underlaying UAV-assisted network under some necessary constraints, which involve the outage probability constraints of ground terminals, the flight altitude constraint of the UAV, the minimum harvested energy constraints of D2D users, and the transmission time constraint. Both radio resource allocation and the flight altitude are jointly optimized based on the worst case approach. The considered nonconvex problem is transformed into a convex one by exploiting variable relaxation and variable substitution approaches. The Lagrange dual theory is used to derive the closed-form expressions of robust resource allocation. Simulation results demonstrate the effectiveness of the proposed algorithm by comparing it with the benchmark algorithms in terms of EE and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.