Abstract

In this paper we discuss the resolution of Kepler’s equation in all eccentricity regimes. To avoid rounding off problems we find a suitable starting point for Newton’s method in the hyperbolic case. Then, we analytically prove that Kepler’s equation undergoes a smooth transition around parabolic orbits. This regularity allows us to fix known numerical issues in the near parabolic region and results in a non-singular iterative technique to solve Kepler’s equation for any kind of orbit. We measure the performance and the robustness of this technique by comprehensive numerical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.