Abstract

Reservoir computing (RC) is a new framework for neural computation. A reservoir is usually a recurrent neural network with fixed random connections. In this article, we propose an RC model in which the connections in the reservoir are modifiable. Specifically, we consider correlation‐based learning (CBL), which modifies the connection weight between a given pair of neurons according to the correlation in their activities. We demonstrate that CBL enables the reservoir to reproduce almost the same spatiotemporal activity patterns in response to an identical input stimulus in the presence of noise. This result suggests that CBL enhances the robustness in the generation of the spatiotemporal activity pattern against noise in input signals. We apply our RC model to trace eyeblink conditioning. The reservoir bridged the gap of an interstimulus interval between the conditioned and unconditioned stimuli, and a readout neuron was able to learn and express the timed conditioned response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.