Abstract
A high-deposition-area, robust inorganic scaffold, unique in its reproducible anisotropic macropores, is reported. This scaffold has a Young’s modulus of 455 ± 34 kPa and a yield strength of 215 ± 10 kPa in compression. It supports 3.5 ± 1.0 mL min–1 cm–2 volumetric flux of water with a modest 4.4 kPa head pressure. The scaffold is generated by freeze-casting a low-pH, concentrated silicic acid solution, followed by supercritical drying (SCD), changing the way water glass is used to generate support substrates. The scaffold enables facile immobilization of molecules or nanoparticles for liquid-phase applications, including heterogeneous catalysis, separations, biomedical devices, and energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.