Abstract

Based on fuzzy control techniques, this article is concerned with the problem of robust reliable control for a near space vehicle (NSV) with parametric uncertainties and actuator faults. The nonlinear dynamics of a NSV is represented by the Takagi–Sugeno fuzzy models, and then the actuator fault model and fuzzy state-space observer are developed. Next, the fuzzy observer-based robust reliable control strategy is proposed. It is proved that the fuzzy control systems for the NSV is reliable in the sense that the closed-loop system is asymptotically stable and the actuator components can operate well in the presence of some actuator faults. The developed theoretical results are in the form of linear matrix inequalities, which can be readily solved via standard numerical software. Finally, simulation results are given to illustrate the applicability of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call