Abstract

With reducing form-factor and functional integration of mobile devices, Wafer Level Packaging (WLP) is attractive packaging technology with many advantages in comparison to standard Ball Grid Array (BGA) packages. With the advancement of various fan-out WLP, it is more optimal and promising solution compared to fan-in WLP, because it can offer greater flexibility in design of more IOs, multi-chips, heterogeneous integration and 3D SiP. eWLB (embedded wafer level packaging) is a type of fan-out WLP enabling applications that require smaller form-factor, excellent heat dissipations, thin package profile as it has the potential to evolve in various configurations with proven manufacturing capacity and production yield. This paper discusses the recent advancements of robust reliability performance of large size eWLB. It will also highlight the recent achievement of enhanced component level reliability with advanced dielectric materials. After a parametric study and mechanical simulations, new advanced materials were selected and applied to eWLB. Standard JEDEC tests were carried out to investigate component level reliability of large size (9x9~14x14mm2) test vehicles and both destructive/non-destructive analysis were performed to investigate potential structural defects. Daisychain test vehicles were also tested for drop and TCoB (Temperature Cycle on Board) reliability performance in industry standard test conditions. Besides, this paper will also present a study of package level warpage behaviour with Thermo-Moire measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.