Abstract

This paper addresses the problem of robust and efficient relative rotation averaging in the context of large-scale Structure from Motion. Relative rotation averaging finds global or absolute rotations for a set of cameras from a set of observed relative rotations between pairs of cameras. We propose a generalized framework of relative rotation averaging that can use different robust loss functions and jointly optimizes for all the unknown camera rotations. Our method uses a quasi-Newton optimization which results in an efficient iteratively reweighted least squares (IRLS) formulation that works in the Lie algebra of the 3D rotation group. We demonstrate the performance of our approach on a number of large-scale data sets. We show that our method outperforms existing methods in the literature both in terms of speed and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.