Abstract

Transcription elongation by multi-subunit RNA polymerases (RNAPs) is regulated by auxiliary factors in all organisms. NusG/Spt5 is the only universally conserved transcription elongation factor shared by all domains of life. NusG is a component of antitermination complexes controlling ribosomal RNA operons, an essential antipausing factor, and a transcription-translation coupling factor in Escherichia coli. We employed RNET-seq for genome-wide mapping of RNAP pause sites in wild-type and NusG-depleted cells. We demonstrate that NusG is a major antipausing factor that suppresses thousands of backtracked and nonbacktracked pauses across the E. coli genome. The NusG-suppressed pauses were enriched immediately downstream from the translation start codon but were also abundant elsewhere in open reading frames, small RNAgenes, and antisense transcription units. This finding revealed a strong similarity of NusG to Spt5, which stimulates the elongation rate of many eukaryotic genes. We propose a model in which promoting forward translocation and/or stabilization of RNAP in the posttranslocation register by NusG results in suppression of pausing in E. coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call