Abstract

We propose a robust procedure to estimate a linear regression model with compositional and real-valued explanatory variables. The proposed procedure is designed to be robust against individual outlying cells in the data matrix (cellwise outliers), as well as entire outlying observations (rowwise outliers). Cellwise outliers are first filtered and then imputed by robust estimates. Afterwards, rowwise robust compositional regression is performed to obtain model coefficient estimates. Simulations show that the procedure generally outperforms a traditional rowwise-only robust regression method (MM-estimator). Moreover, our procedure yields better or comparable results to recently proposed cellwise robust regression methods (shooting S-estimator, 3-step regression) while it is preferable for interpretation through the use of appropriate coordinate systems for compositional data. An application to bio-environmental data reveals that the proposed procedure—compared to other regression methods—leads to conclusions that are best aligned with established scientific knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.