Abstract
Co-registration of aerial imagery and Light Detection and Ranging (LiDAR) data is quite challenging because the different imaging mechanisms produce significant geometric and radiometric distortions between the two multimodal data sources. To address this problem, we propose a robust and effective coarse-to-fine registration method that is conducted in two stages utilizing spatial constraints and Gabor structural features. In the first stage, the LiDAR point cloud data is transformed into an intensity map that is used as the reference image. Then, coarse registration is completed by designing a partition-based Features from Accelerated Segment Test (FAST) operator to extract the uniformly distributed interest points in the aerial images and thereafter performing a local geometric correction based on the collinearity equations using the exterior orientation parameters (EoPs). The coarse registration aims to provide a reliable spatial geometry relationship for the subsequent fine registration and is designed to eliminate rotation and scale changes, as well as making only a few translation differences exist between the images. In the second stage, a novel feature descriptor called multi-Scale and multi-Directional Features of odd Gabor (SDFG) is first built to capture the multi-scale and multi-directional structural properties of the images. Then, the three-dimensional (3D) phase correlation (PC) of the SDFG descriptor is established to detect the control points (CPs) between the aerial and LiDAR intensity image in the frequency domain, where the image matching is accelerated by the 3D Fast Fourier Transform (FFT) technique. Finally, the obtained CPs not only are employed to refine the EoPs, but also are used to achieve the fine registration of the aerial images and LiDAR data. We conduct experiments to verify the robustness of the proposed registration method using three sets of aerial images and LiDAR data with different scene coverage. Experimental results show that the proposed method is robust to geometric distortions and radiometric changes. Moreover, it achieves the registration accuracy of less than 2 pixels for all cases, which outperforms the current four state-of-the-art methods, demonstrating its superior registration performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.