Abstract

We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip and the GF substrate. Reduction of fluorine by the electric field produces graphene nanoribbons (GNR) with a width of 105-1,800 nm with sheet resistivity drastically decreased from >1 TΩ·sq. -1 (GF) down to 46 kΩ·sq. -1 (GNR). Fluorine reduction also changes the topography, friction, and work function of the GF. Kelvin probe force microscopy measurements indicate that the work function of GF is 180-280 meV greater than that of graphene. The reduction process was optimized by varying the AFM probe velocity between 1.2 μm·s -1 and 12 μm·s -1 and the bias voltage applied to the sample between -8 and -12 V. The electrostatic field required to remove fluorine from carbon is ~1.6 V·nm -1 . Reduction of the fluorine may be due to the softening of the C-F bond in this intense field or to the accumulation and hydrolysis of adventitious water into a meniscus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.